首页> 外文OA文献 >Development and evaluation of a high-resolution reanalysis of the East Australian Current region using the Regional Ocean Modelling System (ROMS 3.4) and Incremental Strong-Constraint 4-Dimensional Variational (IS4D-Var) data assimilation
【2h】

Development and evaluation of a high-resolution reanalysis of the East Australian Current region using the Regional Ocean Modelling System (ROMS 3.4) and Incremental Strong-Constraint 4-Dimensional Variational (IS4D-Var) data assimilation

机译:使用区域海洋建模系统(ROMS 3.4)和增量强约束4维变分(IS4D-Var)数据同化开发和评估东澳大利亚当前地区的高分辨率再分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

© 2016 The Authors. As with other Western Boundary Currents globally, the East Australian Current (EAC) is highly variable making it a challenge to model and predict. For the EAC region, we combine a high-resolution state-of-the-art numerical ocean model with a variety of traditional and newly available observations using an advanced variational data assimilation scheme. The numerical model is configured using the Regional Ocean Modelling System (ROMS 3.4) and takes boundary forcing from the BlueLink ReANalysis (BRAN3). For the data assimilation, we use an Incremental Strong-Constraint 4-Dimensional Variational (IS4D-Var) scheme, which uses the model dynamics to perturb the initial conditions, atmospheric forcing, and boundary conditions, such that the modelled ocean state better fits and is in balance with the observations. This paper describes the data assimilative model configuration that achieves a significant reduction of the difference between the modelled solution and the observations to give a dynamically consistent "best estimate" of the ocean state over a 2-year period. The reanalysis is shown to represent both assimilated and non-assimilated observations well. It achieves mean spatially averaged root mean squared (rms) residuals with the observations of 7.6ĝ€cm for sea surface height (SSH) and 0.4ĝ€°C for sea surface temperature (SST) over the assimilation period. The time-mean rms residual for subsurface temperature measured by Argo floats is a maximum of 0.9ĝ€°C between water depths of 100 and 300ĝ€m and smaller throughout the rest of the water column. Velocities at several offshore and continental shelf moorings are well represented in the reanalysis with complex correlations between 0.8 and 1 for all observations in the upper 500ĝ€m. Surface radial velocities from a high-frequency radar array are assimilated and the reanalysis provides surface velocity estimates with complex correlations with observed velocities of 0.8-1 across the radar footprint. A comparison with independent (non-assimilated) shipboard conductivity temperature depth (CTD) cast observations shows a marked improvement in the representation of the subsurface ocean in the reanalysis, with the rms residual in potential density reduced to about half of the residual with the free-running model in the upper eddy-influenced part of the water column. This shows that information is successfully propagated from observed variables to unobserved regions as the assimilation system uses the model dynamics to adjust the model state estimate. This is the first study to generate a reanalysis of the region at such a high resolution, making use of an unprecedented observational data set and using an assimilation method that uses the time-evolving model physics to adjust the model in a dynamically consistent way. As such, the reanalysis potentially represents a marked improvement in our ability to capture important circulation dynamics in the EAC. The reanalysis is being used to study EAC dynamics, observation impact in state-estimation, and as forcing for a variety of downscaling studies.
机译:©2016作者。与全球其他西方边界洋流一样,东澳大利亚洋流(EAC)的变数很大,这给建模和预测带来了挑战。对于EAC区域,我们使用先进的变分数据同化方案,将高分辨率的最新数字海洋模型与各种传统和新近获得的观测资料相结合。数值模型是使用区域海洋建模系统(ROMS 3.4)进行配置的,并从BlueLink ReANalysis(BRAN3)获取边界强制。对于数据同化,我们使用增量强约束4维变分(IS4D-Var)方案,该方案使用模型动力学来扰动初始条件,大气强迫和边界条件,从而使建模的海洋状态更适合并适合与观察结果保持平衡。本文介绍了数据同化模型配置,该配置可显着减小建模解决方案和观测值之间的差异,从而在2年的时间内对海洋状态进行动态一致的“最佳估计”。重新分析显示很好地代表了同化和非同化的观察。在同化期间,它在海面高度(SSH)观测到7.6?cm和海面温度(SST)观测到的平移均方根(rms)残差,获得了平均空间均方根(rms)残差。由Argo浮子测得的地下温度的时间均方根均方根值在水深100至300μm之间的最大值最大为0.9℃,而在其余水柱中较小。在重新分析中很好地反映了几个近海和大陆架系泊处的速度,在上500 m m的所有观测值中,相关系数在0.8和1之间。高频雷达阵列的表面径向速度被同化,重新分析提供的表面速度估计具有复杂的相关性,在整个雷达覆盖范围内观测到的速度为0.8-1。与独立(非同化)船上电导率温度深度(CTD)铸造观测值的比较显示,在重新分析中,地下海洋的表示形式有了显着改善,电势密度的均方根值降低到自由度的均方根值的一半水柱上涡流影响部分的运行模型。这表明随着同化系统使用模型动力学来调整模型状态估计,信息已成功地从观察到的变量传播到未观察到的区域。这是第一项以如此高分辨率对区域进行重新分析的研究,它利用了空前的观测数据集,并使用了一种同化方法,该方法利用时间演化的模型物理学来以动态一致的方式调整模型。因此,重新分析潜在地代表了我们捕获EAC中重要循环动态的能力的显着提高。重新分析被用于研究EAC动态,状态估计中的观测影响,并被迫进行各种规模缩小研究。

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号